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Abstract

Political parties have grown increasingly polarized in recent decades. Furthermore, this

polarization has spilled over into common-values issues that we would not expect to be subject

to ideological disagreements. We develop a model to study why and how this ideological

infection occurs. In the model, two parties bargain over an ideological and a common-values

issue. Although they have different ideal points on the ideological dimension, they agree on

optimal policies for the common-values issue. In this setting, the majority party can leverage

the common-values dimension to obtain favorable policies on the ideological dimension. We

show that in a changing world this can cause ideological infection, and the equilibrium policy

to be inefficient on the common values dimension. This inefficiency can be induced by the

proposer, in which case the policy undershoots the parties’ shared ideal point, or the veto-

player, in which case the policy overshoots the optimal.



Introduction

Two important observations often characterize accounts of American politics. First, political parties

are growing increasingly polarized. Looking at the US Congress, measures of polarization were quite

low until the mid 1970s, but have seen a steep increase since then (Barber et al., 2015). Second, while

political conflict between the parties has remained organized along classic dimensions of polarization,

other issues ‘have been absorbed into it’ (Barber et al. (2015), p. 23). Indeed, Lee (2005) describes

how congressmen exhibit partisan divisions on issues ranging from good government, to disaster

relief, to transportation programs, on which we would expect the preferences of ‘both parties and

all voters [to be] located at a single point’ (Stokes (1963), p. 372). Thus, political parties now

appear to be polarized on virtually all dimensions, including those that seem to have no ideological

connotation. As a consequence, in recent decades we have witnessed a stark decrease in the ability

of Congress’s to legislative efficiently, even on these common-values issues over which parties have

no underlying ideological disagreement (Layman et al., 2006).

In this paper, we build on these observations and the intuition that these two developments

are fundamentally related. We develop a model showing how, why, and when, parties’ dynamic

incentives may cause increasing polarization to spillover from dimensions of genuine conflict to

common-values issues, in turn producing inefficient policies. Thus, political conflict can become

multidimensional and parties appear as if they are divided on both ideological and common-values

dimensions. Substantively, our results imply that the key consequence of this “ideological infection”

is that ‘public policy does not adjust to changing economic and demographic circumstances’ (Barber

et al. (2015), p. 41). In the most severe form of this inefficiency, Congress appears unwilling to

address even the most pressing issues facing the country, instead choosing to ‘kick the can down

the road (...) and govern by (artificial) crises’ (Barber et al. (2015), p. 41).

In our model, two parties, R and L, repeatedly bargain over both an ideological issue, e.g.,

economic redistribution or gun control, and a common-values issue, e.g., infrastructure spending

or crisis relief. The parties have different ideal points on the ideological issue, but agree on the

optimal common-values policy. Initially, the status quo on the conflict dimension lies between the
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ideal policies of the two players, i.e., in the gridlock interval, and the status quo on the common

values dimension is inefficient. In each period R makes a proposal, which consists of a policy on

the ideological and common-values issue, and L votes in favor or against the proposal. On both

dimensions, policies remain in place until a new policy is passed. Thus, the status quo in each

period is determined by the bargaining outcome of the previous period.

The key feature of our model is that players’ ideal policies on both dimensions may change

between periods. Consistent with our earlier observations, we assume the ideal points of the parties

on the ideological dimension become more polarized each period. This may, for example, stem

from the parties expecting their constituents will grow more and more divided, continuing the

trend of previous decades. As a result, parties anticipate they will have to appeal to more extreme

preferences in order to maintain support of their respective voter base in the future (Peltzman, 1984).

Additionally, the optimal common-values dimension policy evolves over time. For example, a crisis

may be expected to worsen and thus require bolder intervention in the future to be adequately

addressed; infrastructure may keep deteriorating, necessitating greater investment tomorrow; or

anticipated technological progress may alter the optimal investment in green technologies in the

future.

The ability to bargain over multiple issues creates new strategic incentives for the parties. When

parties bargain over multiple policy dimensions, proposals on unrelated issues are often bundled

together in the same bill (Krutz, 2001; Hanson, 2014; Krutz, 2001; Clinton and Lapinski, 2006;

Kardasheva, 2013; Hazama and Iba, 2017; Meßerschmidt, 2021). In our setting, combining the

ideological dimension with the commonly beneficial policy change on the crisis issue gives the

proposer leverage to pass divisive policies that would otherwise fail, a tactic commonly used in

practice (Krutz, 2000; Casas et al., 2020).

In a static world, this form of issue linkage generates no detrimental spillovers from the ideological

issue to the common-values issue. The efficient policy on the dimension of agreement also maximizes

the ideological concessions the proposer can obtain. As such, in equilibrium, there is no impediment

to the parties implementing the commonly beneficial policy, e.g., the crisis is immediately addressed
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or necessary investments in infrastructure are made.

In a dynamic setting, this is not always true. As discussed above, the ideal policy on the

common-values dimension moves away from the initial status quo over time. Consequently, inaction

(or inefficient action) on this dimension becomes more costly for both parties over time and party R,

the proposer, faces a trade-off. R can use the efficient policy to buy ideological concessions today, or

pay the cost of inaction today and leave more inefficiency on the table to buy additional concessions

in the future. In other words, the proposer’s dynamic payoff is maximized by doing too little on

the common values dimension today and undershooting the efficient policy to preserve leverage in

the future. If policy undershoots we may observe too little investment in infrastructure, or a crisis

that is only partially addressed. On the other hand, the dynamic payoff of L, the veto player, is

maximized by doing too much today and overshooting the efficient policy to tie the proposer’s hands

in the future. Here, we may observe the parties over-investing in infrastructure, or policies aimed

not only at addressing the current crisis but also preventing future ones.

Despite these contrasting dynamic preferences the parties still have strong incentives to imple-

ment the efficient policy on the common-value dimension. This is because inefficient policies are

costly for both the proposer R and the veto player L. We show that increasing polarization is crucial

for dynamic incentives to dominate and inefficiency to emerge. In particular, ideological infection of

the common-values dimension may be avoided if the rate of growth in polarization is slow enough.

Under rapidly increasing polarization, instead, ideological infection is inevitable.

Slowly increasing ideological polarization coupled with rapid change on the dimension of shared

agreement gives R enough leverage to obtain its static optimal ideological policy each period, even

if the common-values policy is always set at the efficient level. As such, if the optimal common-

values policy changes fast enough relative to ideological polarization, then policy is always efficient.

Furthermore, even when ideological infection emerges inefficiency can only be sustained for a finite

amount of time, because eventually polarization is growing very slow relative to changes on the

common-values issue.

If polarization instead increases rapidly, then ideological infection always emerges. Thus, even
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though parties have ideological disagreements only on one issue, rapidly increasing polarization on

this dimension implies that in equilibrium political conflict inevitably becomes multidimensional.

The parties then appear as if they are divided on both the ideological and the common values

dimension. Furthermore, this inefficiency on the common-values dimension can be sustained for an

arbitrarily long period of time.

In equilibrium, inefficiency under rapid polarization may exhibit undershooting or overshooting.

If the initial status quo is sufficiently good for the veto player then L is very unwilling to grant

R ideological concessions unless R reduces its future leverage. In turn, R overshoots the optimal

common-values policy and moves policy closer to tomorrow’s optimum, thus tying its own hands

for the future in order to be rewarded with ideological gains today.

In contrast, when the initial status quo is sufficiently bad for the veto player, the proposer

undershoots on the common-values policy today to maintain greater bargaining leverage tomorrow.

Naive intuition may suggest this form of inefficiency arises because R can obtain its first-period

ideal point on the ideological dimension without moving policy all the way to the efficient common-

values policy today, and can therefore save some inefficiency to improve its bargaining leverage

tomorrow. In other words, undershooting should only emerge when the proposer does not ‘need’

leverage today. However, this is not always true in our setting. Indeed, we find that the proposer

sometimes undershoots the optimal common-values policy, even if doing so does not provide enough

leverage to shift today’s ideological policy all the way to the proposer’s preferred outcome in the

first period. Thus, the proposer chooses to incur immediate costs on both the common-values and

the ideological dimension.

The reason is that movement of the ideal common-values policy creates a compounding effect in

the cost of inefficiency. In the model, this is captured by concave preferences. In practice, suppose

that a crisis is only partially addressed today. As the crisis worsens over time, the cost imposed

by this residual inefficiency becomes more and more significant. Similarly, the cost of having only

partially repaired infrastructures is larger as the infrastructure continues to deteriorate. Thus,

although undershooting the common-values dimension policy is costly for both parties in the first

4



period, it imposes an even larger cost in the second period if it goes unaddressed. Consequently,

undershooting implies that the proposer forgoes some ideological concessions today, but is able to

obtain even greater concessions tomorrow.

The speed of polarization relative to change on the common-values dimension also significantly

impacts observed long-run outcomes. If polarization increases slowly then, as discussed, R is able

to obtain its optimal ideological policy every period. Thus, we should observe large rapid policy

changes on the ideological dimension. On the other hand, if polarization rapidly increases then the

players become relatively more stubborn over time and policy changes become smaller.

Our model makes a number of simplifying assumptions to clearly highlight the mechanism

driving ideological infection. However, our main insights extend beyond the stark setting of the

baseline model.

First, while the baseline model assumes that the same party has proposal power in all periods,

in an extension we study the effect of turnover in power. We show, perhaps surprisingly, that

turnover does not eliminate inefficiency. Furthermore, we show that turnover can sometimes gener-

ate inefficiency even when the equilibrium would be efficient in the baseline with persistent power.

Second, although our model assumes parties can perfectly anticipate where their future preferences,

we show that the mere possibility that ideological polarization will increase rapidly is enough to

generate inefficiency on the common-values dimension. Finally, because our objective is to study

the effects of increasing polarization, we assume both parties become (weakly) more extreme over

time. However, allowing for more general movements largely confirms the intuitions of the baseline.

Rapidly increasing polarization leads to inevitable ideological infection. Conversely, inefficiency

never emerges when polarization decreases too quickly.

Contribution to the Literature

Our research falls within the extensive political economy literature that explores bargaining with

an endogenous status quo.1 While our work shares similarities with previous studies that uncover

1See Eraslan et al. (2022) for an extensive review of this literature.
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inefficiencies generated by dynamic incentives, our focus is unique in examining the consequences of

increasing polarization over time and the possibility of conflict spillovers from issues of disagreement

to pure common-values. Moreover, the mechanisms that generate inefficiency in our setting differ

from those in existing literature, where inefficiencies stem from motives such as insurance against

turnover, insurance against the possibility of developing future conflict, the possibility of being in

a worse bargaining position in the future, or frictions in the bargaining process. In contrast, our

model generates inefficiency due to the multidimensionality of the policy space combined with a

compounding effect that increases inefficiency costs over time.2 In the following discussion, we

provide a detailed overview of related works and highlight the differences.

In a world with turnover, Buisseret and Bernhardt (2017) find that a far-right proposer may

propose a leftist policy to constrain policymaking in the event a far-left proposer holds power in the

future. Under evolving preferences, Austen-Smith et al. (2019) shows that, when parties fear that

increased polarization in the future will make it more difficult to agree on policy changes, statically

inefficient policies may be implemented because they are easier to repeal tomorrow. Several other

works find that bargaining parties may pursue statically inefficient policies as a form of insurance

against future fluctuations in power and/or the possibility of disagreements over this dimension

intensifying in the future (Riboni and Ruge-Murcia, 2008; Zápal, 2011; Dziuda and Loeper, 2016;

Buisseret and Bernhardt, 2017; Dziuda and Loeper, 2018; Austen-Smith et al., 2019).

Our paper highlights that inefficiency on common-values issues can arise in a multidimensional

world even when the proposer is guaranteed to remain in power indefinitely, and the parties are

certain they will never disagree on this dimension. Therefore, unlike existing literature, there is no

insurance motive driving our results. Instead, inefficiency emerges due to the changing cost of resid-

ual inefficiency over time. With concave preferences and shifting ideal policies on common-values

issues, a policy that is inefficient today becomes even more costly tomorrow. Thus, even if the pro-

poser could secure ideological concessions by implementing the efficient policy today, leaving some

2Previous papers in this literature that incorporate multiple policy dimensions focus on issues of existence (Duggan
and Kalandrakis, 2012) and indeterminacy (Anesi and Duggan, 2018). Chen and Eraslan (2017) also analyzes dynamic
bargaining with multiple policy dimensions, but assumes parties can only address one issue at a time. In contrast,
we specifically focus on the effects of bundling different dimensions.
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residual inefficiency on the table can yield even greater concessions in the future. This dynamic

creates incentives for both the proposer and veto player to distort policy.3 As ideological polariza-

tion increases rapidly, these dynamic incentives overpower the static push for efficiency, leading to

ideological infection. Therefore, we contribute to the literature by showing that inefficiencies may

be even more severe than previous results show, conflict can spillover onto unrelated dimensions on

which parties never face any disagreement.4

The emergence of inefficient agreements in our model also relates to commitment problems

in bargaining models of conflict. Previous papers have explored how rapid shifts in power may

render peaceful agreements infeasible and lead to war (e.g., Fearon, 1995; Powell, 2006).5 The

basic intuition is that a powerful country, fearing a future loss of bargaining strength, may initiate

a statically inefficient war to preempt such a shift. Our results are more nuanced. Sometimes

inefficiency emerges for a related logic: the proposer does not need bargaining leverage today but

anticipates needing it in the future. Under other conditions, however, the proposer may prefer

pursuing an inefficient policy even if it reduces its bargaining leverage today and incurs a cost on

both the ideological and common-values dimensions. Once again, the compounding effect described

earlier sustains inefficiency in our setting. This is highlighted by noting that if players’ preferences

over the common-values dimension are linear, or the optimal policy remains unchanged over time,

then the equilibrium is always efficient.

In a different context, some existing works find inefficiency due to frictions in the bargaining

processes. Acharya and Ortner (2013) and Lee (2020) find that dynamic incentives may produce

inefficiencies in a world where policy issues/dimensions are not all available at the same time. For

3Other works study the effects of bundling different dimensions, but consider a one-shot interaction or assume
bargaining concludes once an agreement is reached (e.g., Fershtman, 1990; Jackson and Moselle, 2002; Chen and
Eraslan, 2013; Câmara and Eguia, 2017). Consequently, the inefficiencies we find due to evolving preferences and an
endogenous status quo do not arise in these models.

4This distinguishes our work from papers that find strategic polarization on a single dimension that can exhibit
conflict (Dziuda and Loeper, 2018). Penn (2009) allows for multiple dimensions and characterizes how continuing
policies distort preferences. However, proposals are exogenous in her model, which focuses on voting behavior. In
contrast endogenous proposals are a crucial determinant of preferences our model.

5Of course, our framework differs from the conventional context of war in several ways. Most prominently, a
power shift in a conflict setting typically improves the outside option for one player at the expense of the other. In
contrast, the payoff from the initial no-agreement status quo decreases for both players under increasing polarization.
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example, Lee (2020) finds that policy bundling can create incentives to delay today in order to

leverage a bipartisan policy with ideological policies in the future. However, this result rests on the

assumption that some conflict policy dimensions are only available in the future. If all dimensions

were available immediately, as in our model, there would be no delay in his setting.6 Our paper

complements these works, highlighting how evolving preferences may sustain inefficiency even absent

exogenous constraints in the availability of policy dimensions.

Closer to our paper, Callander and Martin (2017) studies a bargaining model where policies have

an ideological and a quality component. Quality decays over time but can be restored. Our results

show that inefficiency is sustained by the evolution of the player’s ideal points on the two dimensions.

In Callander and Martin (2017), ideological polarization does not increase over time. Consequently,

the proposer never underinvests in quality for leverage. Further, by assumption parties cannot

overinvest today to avoid future decay. Thus, inefficiency never emerges in equilibrium.

Finally, our work is also related to studies that analyze multidimensional bargaining where

players can make transfers to each other (e.g., Austen-Smith and Banks, 1988; Diermeier and Merlo,

2000). Similar to a transfer, our proposer can use the common values dimension for favorable policy

on the partisan dimension. However, this differs from a transfer because both players benefit from

moving policy to the common values ideal point, therefore inefficiency is costly for the proposer

as well. Thus, leaving leverage for the future on the common values dimension is always Pareto

inefficient. Other studies analyze how bargaining players divide a budget between private benefits

and public goods (e.g., Battaglini and Coate, 2007; Volden and Wiseman, 2007). In such settings,

a proposer may have incentives to underprovide on the public good dimension to extract maximum

private transfers for itself. In this context, Bowen et al. (2014) show that an endogenous status quo,

e.g., mandatory public good spending, will actually help correct the inefficiencies that would emerge

in a static setting. This contrasts with our setup, where the endogenous status quo is precisely what

generates inefficiencies.

6Furthermore, Lee (2020) considers a discrete policy space, where a single alternative to the status quo is available.
As such, in his setting there is no scope for veto-player induced inefficiency. On the other hand, our model abstracts
from elections, whereas Lee (2020) explicitly incorporates voters.
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The Model

Our baseline model considers a two-period game that is purposefully stark to clarify the logic be-

hind results. We show that inefficiency can only be avoided if ideological polarization increases

sufficiently slowly. We later extend our analysis to an infinite horizon and demonstrate that rapid

increases in polarization inevitably leads to ideological infection, while the problem is always re-

solved in the long run with slow polarization.

Players and policies. Two parties L and R interact over two periods, t ∈ {1, 2}. The policy

space P is composed of an ideological dimension X ⊂ R, and a common values dimension Y ⊂ R,

where X and Y are both non-degenerate compact intervals and P = X × Y .7 In every period t the

parties bargain to determine a policy outcome pt ∈ P .

Preferences. The stage utility to party i in period t from a policy outcome pt = (x, y) is uit(x) +

vt(y), where uit(x) = −(x − x̂i
t)

2 and vt(y) = −(y − ŷt)
2. Party i’s payoff in the dynamic game is

given by

∑
t∈{1,2}

uit(x) + vt(y),

where we assume no discounting for simplicity in the two-period case.

Party i’s statically optimal policy in period t is given by its ideal point (x̂i
t, ŷt) ∈ P . Thus, the

Y dimension features common values because in every period t the parties receive the same payoff

vt(y) from a policy y.8 On the other hand, the X dimension exhibits ideological conflict because

7We assume X and Y are sufficiently large for the two-period model to avoid corner solutions.
8We assume that parties share exactly the same ideal policy on the dimension of agreement in order to sharpen

our results and characterization. However, our intuitions apply more broadly to cases in which parties face some
conflict on this dimension, but nonetheless agree on what is the optimal direction of reform (i.e., even though their
ideal policy may differ, the status quo is outside of the gridlock interval).
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parties have different ideal policies. We assume that party R’s preferred ideological policy is always

to the right of party L in each period, x̂L
t < x̂R

t .

Importantly, ideal policies are indexed by the time period t and may change over time. We

assume that each party becomes more extreme in the second period, x̂L
2 ≤ x̂L

1 and x̂R
1 ≤ x̂R

2 . Thus,

polarization increases over time. As discussed above, this can capture situations in which parties

anticipate an increasing polarization among their respective voter bases. In such cases, parties

would need to adapt to these developments. We capture this adaptation in a simplified form by

shifting their primitive ideal points. Similarly, ŷ1 and ŷ2 determine the parties’ shared ideal policy

on the common values dimension in each period. For illustration purposes, we assume the ideal

policy on the common-values issue is monotonically increasing, so ŷ1 ≤ ŷ2.

The sequences of ideal policies are common knowledge. Thus, the evolution of ideal points is

deterministic and the parties in our model face no uncertainty. Assuming no uncertainty is not

necessary for our results. However, it allows us to isolate how spillovers from the ideological di-

mension to the common values dimension creates inefficiency, rather than inefficiency being due to

the proposer attempting to insure against extreme shocks. Figure 1 depicts one example of this

evolution process.

Political environment. We assume that R is the proposer in each period and L the veto player.

Thus, at the start of each period t party R makes a proposal (xt, yt) ∈ P , which consists of a policy

on the ideological issue, xt ∈ X, and a policy on the common values issue, yt ∈ Y . Next, party

L decides whether to accept or reject the proposal. If the proposal is accepted then the policy

outcome in period t is pt = (xt, yt). If the proposal is rejected then the policy outcome in period t

is pt = qt, where qt ≡ (xq
t , y

q
t ) ∈ P is the status quo in period t. Notice that we assume proposals on

the two dimensions are bundled together. In our analysis below, we show tha this is without loss

of generality: even if given the choice to present two separate proposals, R would always prefer to

bundle instead.

The policy outcome in the current period becomes the status quo in the subsequent period, i.e.,
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qt = pt−1. The status quo at the beginning of the game is exogenously set at q1 = (xq
1, y

q
1). We

assume that xq
1 is in the static gridlock interval, xq

1 ∈ (x̂L
1 , x̂

R
1 ), and policy is initially inefficient on

the common values dimension, specifically yq1 < ŷ1.

x̂L
1 x̂R

1xq
1

yq1

ŷ1 •

•

•

• •

x̂L
2 x̂R

2

ŷ2

Figure 1: Evolution of ideal points, example

In concluding this section, it is important to acknowledge the simplifying assumptions that

we impose in our baseline model. To facilitate our presentation, we assume parties can perfectly

anticipate their future preferences. Additionally, we impose a specific direction for the evolution

of their respective bliss points, assuming that they must move in opposite directions and become

more extreme over time. We also assume that R is the proposer in each period, without any

turnover. Furthermore, we focus on quadratic-loss preferences, rather than considering general

concave functions. In the Appendix, we confirm the robustness of our qualitative findings to relaxing

each of these assumptions. The results of these analyses are briefly discussed in a robustness section

below.

A Definition of Efficiency

It is useful to start by establishing some terminology. Given our focus on the common-values

dimension, we refer to a policy pt in period t as “efficient” if the outcome on the Y dimension is at

ŷt. Otherwise, we say that policy is inefficient.
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Definition 1. A policy outcome pt in period t is efficient if it sets the common-values policy at ŷt.

Otherwise, pt is inefficient.

Notice that our definition of inefficiency also implies the policy outcome is not Pareto efficient

(statically or dynamically).9 Throughout the paper, we use the term ideological infection to

refer to the emergence of an inefficient policy outcome in equilibrium. This terminology is used to

emphasize that inefficiency arises due to spillovers from the dimension of conflict to the common-

values issue.

Indeed, if the two policy dimensions cannot be bundled together into a single proposal then

there is always efficiency in equilibrium. Specifically, assume that after any proposal (xt, yt) L votes

to accept or reject the xt policy and separately votes to accept or reject the yt policy. Thus, L can

pass both policies, pt = (xt, yt), one policy, pt ∈ {(xt, y
q
t ), (x

q
t , yt)}, or neither policy, pt = (xq

t , y
q
t ).

Remark 1. If bundling is not allowed then policy outcomes are efficient in every period.

Without bundling L can always reject a policy worse than the status quo on the ideological

dimension, and accept any proposal that improves the common-values policy. Consequently, R

has no leverage to move policy away from the initial ideological status quo xq
1 and no incentive to

implement an inefficient common-values policy. As such, policy outcomes are efficient. Thus, if

inefficiency ever arises in equilibrium then it must be due to policy bundling and spillovers from

the ideological dimension. Moreover, any policy changes on the ideological dimension must be due

to the ability to bundle.

Importantly, we note that the proposer does benefit from an institution that allows bundling

and, thus, would not to commit to removing this power.

Remark 2. R’s equilibrium payoff is greater in the game with bundling than in the game without.

9Specifically, Pareto efficiency requires pt ∈ [x̂L
t , x̂

R
t ]×{ŷt}, i.e., efficiency on Y and policy in the gridlock interval

on X. Notice that in our definition of efficiency we therefore sidestep the issue that even with efficiency on the
common values dimension we may have Pareto inefficiency on the conflict issue (or vice versa).
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Analysis

Moving to the analysis, our solution concept is subgame perfect equilibrium and we proceed by

backwards induction. In the second period of the game the players only consider their static

payoffs. Thus, L only accepts a proposal if it statically prefers the proposed bundle to the status

quo. Formally, L accepts any policy (x, y) such that

uL2(x) + v2(y) ≥ uL2(x
q
2) + v2(y

q
2). (1)

In this multidimensional world, L is only willing to accept an ideological policy away from its

bliss point if the proposal improves on the common-values status quo. Thus, if the inherited status

quo is inefficient, yq2 ̸= ŷ2, then R can extract concessions on the conflict dimension by proposing a

bundle that moves the policy on the common-values dimension closer to ŷ2.

In equilibrium, R chooses its proposal to maximize uR2(x) + v2(y) subject to (1). Let x(xq
2, y

q
2)

be the upper solution that solves (1) at equality. This yields:

Lemma 1. In the second period R proposes y∗2 = ŷ2 and x∗
2(x

q, yq) = min
{
x̂R
2 , x̄(x

q, yq)
}
.

Proposing y = ŷ2 maximizes L’s payoff from the proposal on the common-values dimension,

and thus maximizes L’s willingness to accept a worse payoff on the ideological dimension. In turn,

the efficient policy y = ŷ2 not only maximizes R’s payoff on the common-values dimension, but

also maximizes the leverage R has to move policy towards its ideal policy x̂R
2 . Therefore, the

equilibrium policy outcome is always efficient. It is important to note that this result highlights

that inefficiency never emerges in a static world. The possibility to bundle different dimensions

does not create detrimental spillovers absent dynamic motives.

Notice that R’s leverage in the second period increases the further yq2 is from ŷ2. From equation 1,

we can see that as yq2 moves further away from ŷ2, the utility v2(y
q
2) decreases, allowing R to extract

more ideological concessions. Consequently, the proposer’s equilibrium payoff in the second period

increases as the initial status quo becomes more inefficient, while the veto player’s payoff decreases.

As we demonstrate below, these dynamic considerations form the foundation of ideological infection.
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Efficiency in an Unchanging World

The above discussion highlights how the players’ dynamic motive may generate incentives to distort

policy in the first period. However, Proposition 1 demonstrates these incentives are not strong

enough to generate ideological infection if ŷ remains fixed over time.

Proposition 1. If ŷ1 = ŷ2 = ŷ then the equilibrium policy outcome is always efficient, y∗1 = y∗2 = ŷ.

If there is no movement on the common-values dimension, then the policy that minimizes the

proposer’s leverage in the future is the static optimum ŷ, which is also the statically efficient policy.

Thus, the veto player’s dynamically preferred common-values policy is ŷ. However, for R the

efficient policy today removes any ability to change policy in the future, because L will veto any

further movement to the right on the ideological dimension. Therefore, R has dynamic incentives

to adopt an inefficient policy on the common-values dimension today, yt < ŷ, to retain leverage for

the future and pull policy further to the right on the ideological dimension.

However, any ideological cost R can impose on L tomorrow must be because the inefficiency

on the common-values dimension is at least as costly today. In equilibrium, the best R can do is

make L indifferent between accepting the proposal and keeping the status quo, forcing L to absorb

the entire cost of the common-values inefficiency. However, when ŷ1 = ŷ2, this inefficiency imposes

the exact same cost on both the proposer and the veto player today. Moreover, L’s cost from

allowing policy to move further to the right is higher than R’s gain when utilities are concave, and

this is exacerbated by increasing polarization. Thus, the proposer’s cost of inefficiency today on

the common-values dimension is always higher than the future gain on the ideological dimension.

Therefore, the parties’ induced preferences on the common-values dimension still coincide, and there

is no ideological infection. However, as we show below, this no longer holds in a changing world.

Ideological Infection in a Changing World

We now go back to our original assumption, whereby the optimal common-values policy evolves

over time, ŷ1 < ŷ2.

14



Figure 2: Second-period equilibrium payoffs as a function of yq2.

Let Uq = uL1(x
q
1) + v1(y

q
1) + u(x∗

2(x
q, yq)) denote L’s dynamic utility from keeping the status

quo. Thus, in the first period L accepts a proposal (x, y) if

uL1(x) + v1(y) + u(x∗
2(x, y)) ≥ Uq,

and rejects otherwise. Facing this constraint from L, in the first period party R chooses (x, y) to

solve the following maximization problem:

max
x,y

uR1(x) + v1(y) + uR2(x
∗
2(x, y)) (2)

s.t. uL1(x) + v1(y) + uL2(x
∗
2(x, y)) ≥ Uq

Building on the above discussion, we see that each party faces a trade-off when bargaining in

the first period. While both parties prefer an efficient common-values policy today, their incentives

to influence future policy outcomes can lead to a divergence in their preferred policies. Equation

1 shows that as yq2 moves further from ŷ2, x(x
q
2, y

q
2) increases. As a result, the proposer’s second-

period equilibrium payoff increases when the status-quo common-values policy inherited from the

first period moves away from ŷ2, as shown in Figure 2. Conversely, the veto player’s continuation

value increases as y1 moves closer to ŷ2. As a consequence, L prefers to overshoot the efficient

common-values policy, ŷ1 < y1 < ŷ2, while R prefers to undershoot it y1 < ŷ1 < ŷ2.

Proposition 1 demonstrates that these dynamic considerations never dominate when the optimal
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ŷ1 ŷ2y1

Figure 3: Common-values utility in first and second period.

common-values policy remains fixed across periods, as any cost R imposes on L to gain leverage

tomorrow imposes the same cost on both L and R today. We now instead show that efficiency no

longer prevails when ŷ1 ̸= ŷ2.

In particular, if ŷ1 < ŷ2, then concavity implies that for any y1 <
ŷ1+ŷ2

2
we have

|v2(y1)− v2(ŷ1)| > |v1(y1)− v1(ŷ1)|. (3)

For example, suppose an inefficient common-values policy y1 < ŷ1 is implemented in the first

period, which moves too little in the optimal direction. This policy imposes costs on both parties in

the first period and increases the cost to the veto player for maintaining the status quo in the second

period, allowing R to pull x2 closer to x̂R
2 . Condition 3 indicates that, when ŷ changes over time,

this increased cost on the veto player is greater than the cost that both parties pay for inefficiency

in the first period (as shown in Figure 3).

This wedge in the cost of residual inefficiency today and tomorrow creates the possibility for R

to benefit from an inefficient policy outcome, which can lead to ideological infection. In particular,

the emergence of infection in equilibrium, as well as the form of resulting inefficiency, depends on

the rate at which ideological polarization increases relative to the evolution of the common-values

dimension, as well as how favorable the initial status quo is to the veto player.
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Slowly Increasing Ideological Polarization

First, we consider the case where polarization on the ideological dimension increases slowly relative

to the movement on the common value dimension. Specifically, assume

uL2(x̂
R
2 )− uL2(x̂

R
1 ) ≥ v2(ŷ1)− v2(ŷ2). (4)

Condition 4 states that the change in L’s utility from R’s ideologically preferred policies is greater

than the change in utility on the common-values dimension from the optimal policy.Proposition 2

characterizes the first-period equilibrium policy outcome in this case, where ideological polarization

increases faster than the evolution of the common-values dimension.

Proposition 2. Assume that uL2(x̂
R
2 ) − uL2(x̂

R
1 ) ≥ v2(ŷ1) − v2(ŷ2). There exists a unique Ũ such

that

• If Uq < Ũ , then the equilibrium policy outcome is efficient, y∗1 = ŷ1, and x∗
1 = x̂R

1

• If Uq > Ũ , then the equilibrium policy outcome overshoots, y∗1 > ŷ1, and x∗
1 < x̂R

1

Condition 4 implies that even if the efficient common-value policy is implemented in the first

period, R still has enough leverage to get its ideologically preferred bundle approved in the sec-

ond, even if the ideological policy component is at x̂R
1 . Rapid movement on the common-values

dimension, such as a rapid worsening of the crisis or deteriorating infrastructure, makes even a fully

efficient policy today very inefficient tomorrow. Therefore, the proposer can pull the second-period

ideological policy all the way to x̂R
2 , and has no incentive to undershoot on the common-values

dimension.

Consequently, if the initial status quo is sufficiently bad for the veto player (Uq is low) then,

given 4, the proposer can get its static optimum accepted in both periods. The proposer has no

reason to pay the cost of inefficiency and in equilibrium y∗1 = ŷ1. If instead Uq is sufficiently high, the

veto player has relatively high bargaining power in the first period. In turn, the proposer is forced

to overshoot on the common-values dimension, y1 > ŷ1, to obtain ideological concessions. Setting
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y1 > ŷ1 reduces R’s future bargaining power and improves the veto player’s expected second-period

payoff (see Figure 2). The veto player is thus willing to reward R by compromising on the ideological

dimension today.

Rapidly Increasing Ideological Polarization

We now consider the case where polarization on the ideological dimension increases rapidly:

uL2(x̂
R
2 )− uL2(x̂

R
1 ) < v2(ŷ1)− v2(ŷ2). (5)

Under Condition 5 if R obtains its statically optimum (x̂R
1 , ŷ1) in the first period, then it does

not have enough leverage to get its preferred policy in the second. In this case, the parties’ in-

duced preferences over the common-values dimension always differ.The proposer’s optimal policy

implements y1 < ŷ1 to increase future leverage, while the veto player’s optimal policy sets y1 > ŷ1

(Figure 4). Thus, the ideological dimension infects the common-values dimension, and inefficiency

always arises in equilibrium.

x̂L
2 x̂L

1 x̂R
1 x̂R

2

ŷ2

ŷ1 •
L static

•d̂
L

•
R static

•̂
dR

Figure 4: Dynamic ideal points (d̂L and d̂R) under rapidly increasing polarization.

Proposition 3 characterizes equilibrium outcomes in the first period when polarization increases

rapidly.

Proposition 3. Assume uL2(x̂
R
2 )−uL2(x̂

R
1 ) < v2(ŷ1)−v2(ŷ2). There exists unique U < U such that

• If Uq < U , then in equilibrium y∗1 < ŷ1, and x∗
1 > x̂R

1
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• If Uq ∈ (U,U), then in equilibrium y∗1 < ŷ1, and x∗
1 < x̂R

1

• If Uq > U , then in equilibrium y∗1 ∈ (ŷ1, ŷ
L
d ), and x∗

1 < x̂R
1

Suppose Uq > U , meaning the initial status quo is very favorable to the veto player (depicted in

the right-most panel of Figure 5). In this case, R has little leverage in the first period and is unable

to pull the conflict-dimension policy to its first-period ideal, x∗
1 < x̂R

1 . Thus, the proposer finds it

profitable to bind themselves in the future to obtain larger concessions today. The equilibrium is

characterized by a veto-player-induced inefficiency, where the common-values policy overshoots the

first-period ideal and moves the status quo too much in the optimal direction, y∗1 ∈ (ŷ1, ŷ
L
d ).

If instead Uq < U , then the initial status quo is very unfavorable to the veto player, as depicted

in the left-most panel of Figure 5, and R is unconstrained by L. This means that R can obtain a

favorable policy on the conflict dimension and still preserve its future leverage. In equilibrium, the

common values policy undershoots the first-period optimum with y∗1 < ŷ1, and the proposer is able

to pass an extreme ideological policy with x∗
1 ∈ (x̂R

1 , x̂
R
2 ).

Finally, consider the case where the status quo is not too favorable or unfavorable to either

party (Uq ∈ (U,U), depicted in the middle panel of Figure 5. Here, R undershoots on the common

values dimension, y∗1 < ŷ1, and proposes an ideological policy to the left of both its first and second

period ideals, x∗
1 < x̂R

1 . Interestingly, notice that in this case the proposer could get its first-period

ideologically preferred policy accepted. However, this would require satisfying the veto player by

overshooting on the common values dimension, i.e., bundling x̂R
1 with y1 > ŷ1. Recall that, given

concavity, any residual inefficiency the players inherit from the first period is more costly in the

second, and thus allows the proposer to buy even more concessions than could be obtained by

implementing the efficient ŷ1 immediately. Thus, R chooses an inefficient policy in the first period,

even though it incurs an immediate cost on both the common-values and ideological dimensions.

In this case, undershooting does not occur because the proposer does not need leverage today.

Rather, the evolution of the common-values optimal policy creates a compounding effect in the cost

of inefficiency, which makes it advantageous for the proposer to save additional bargaining leverage

for the future.
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Figure 5: Dynamic indifference curves (blue for the veto player, red for the proposer). The left-most
panel considers Uq < U . In the middle panel we have Uq ∈ (U,U). In the right-most panel we set
Uq > U .

Relative Extremism and Inefficiency

Our analysis so far demonstrates that a sufficient condition for ideological infection to emerge is

that the players grow highly polarized in the second period. Here, we study how the extremism of

the veto player and proposer respectively influences the likelihood and magnitude of the inefficiency

in equilibrium.

Recall that outcomes are always inefficient when

uL2(x̂
R
2 )− uL2(x̂

R
1 ) < v2(ŷ1)− v2(ŷ2). (6)

Increasing x̂R
2 decreases the left-hand side of 6 and makes it easier for the conditions for in-

efficiency to hold. L becoming more extreme also decreases the left-hand side of (6). However,

increasing x̂R
2 decreases the left-hand side of (6) at a faster rate. Thus, although either way of

increasing polarization can lead to ideological infection, proposer extremism has more significant

impact than veto player extremism. Furthermore, if R does not become more extreme, x̂R
2 = x̂R

1 ,

then condition (6) never holds and policy is efficient.

The evolution of ideological polarization also affects the degree of inefficiency in the rapid po-

larization case. However, the direction of this effect is contingent on whether the proposer or veto
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player becomes increasingly more extreme, as well as whether the status quo is favorable for the

veto player.

If R’s second-period ideal point becomes more extreme, then it is important for R to maintain

leverage for the future. Consequently, increasing x̂R
2 incentivizes R to propose a policy that is

further from ŷ2. The left panel of Figure 6 depicts a numerical example. Increasing x̂R
2 decreases y∗1,

whether the original first-period status quo is bad or good for the veto player. However, this implies

opposite effects on the magnitude of the inefficiency in the first period. When the first-period status

quo is good for the veto player, the equilibrium common-values policy always overshoots the static

optimum, so increasing x̂R
2 moves y∗1 towards ŷ1 and decreases inefficiency. In contrast, in the bad

status quo case there is undershooting in equilibrium, thus increasing x̂R
2 moves y∗1 away from ŷ1

and increases inefficiency.

The effect of L’s increasing extremism is more subtle. Decreasing x̂L
2 impacts y∗1 by changing

the second-period constraint, through x, but it also alters the constraint in the first period. When

the initial status quo is bad for the veto player, the first-period constraint is not binding and thus

only the effect through the second-period constraint matters. This is depicted in the blue curve of

the right-panel in Figure 6. Moving x̂L
2 to the left makes L more stubborn in the second period,

and thus bargaining leverage is relatively less effective. Consequently, undershooting becomes a

less profitable strategy for the proposer. The equilibrium policy moves closer to ŷ1 and inefficiency

decreases. If instead the status quo is sufficiently good for L, then L’s participation constraint is

binding for the proposer in the first period. Here, making x̂L
2 more extreme also decreases L’s payoff

from the status quo in the first period, which improves R’s ability to pass policies. These first and

second-period constraint effects can be competing, and generate a non-monotonicity. When x̂L
2 is

sufficiently low the first-period constraint effect dominates, and further decreasing x̂L
2 allows R to

overshoot less while still satisfying L’s constraint. When x̂L
2 is larger, the second-period constraint

effect dominates and moving x̂L
2 to the left forces R to overshoot more to compensate. An example

is depicted by the yellow curve in left panel of Figure 6.
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Figure 6: Numerical exercise studying the effect of increasing extremism on y∗1. The left panel
depicts effect of changing x̂R

2 and the right panel the effect of x̂L
2 . The blue curve represents the

case where the status-quo payoff to L is low, so his participation constraint is not binding. The
yellow curve depicts the case where the payoff to L from the status quo is high enough that the
constraint is binding.

Long-run Inefficiency

We now extend our analysis to an infinite-horizon game in order to study when increasing polar-

ization leads to inefficiency over the long run. Bargaining proceeds as before, but unfolds over an

infinite number of periods, t = 1, 2, ....

Recall that the policy dimensions X and Y are both compact. Denote Y = maxY and X =

maxX as the (upper) boundaries of the policy space on the two dimensions. Additionally, we specify

the evolution of ideal points as ŷt = min{γt, Ȳ } and x̂R
t = −x̂L

t = min{tη, X̄}, with γ > 0 and η > 0.

Thus, the common-values ideal point increases linearly in time, while the evolution of ideal points

on the conflict dimension may be concave or convex. The speed of these evolution processes are

parameterized by γ and η. Boundedness of the policy space simplifies existence and characterization

of equilibrium behavior, but by taking X and Y large we can study long-run outcomes that are not

sensitive to the ideal points eventually hitting the boundary.

We focus on pure strategy stationary Markov perfect equilibria (henceforth referred to as “equi-

libria”). Additionally, we assume that L votes to accept whenever indifferent and R proposes a

policy that passes in each period, which is without loss of generality.
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In our model, a (pure) strategy for R is a function π that determines proposals, and a strategy

for L is a function α that determines acceptance decisions. The restriction to Markov strategies

requires π depends only on the current status quo, (xq
t , y

q
t ), and the parties’ period t ideal points,

(x̂R
t , ŷt) and (x̂L

t , ŷt), thus, π : P3 → P . Likewise, for L α is a mapping from ideal points, the status

quo, and a proposed policy to an accept (α = 1) or reject (α = 0) decision, α : P4 → {0, 1}.

Given a strategy profile σ = (π, α) we can define continuation payoffs for each player as

V i
t (x

q, yq), for i ∈ {L,R} (suppressing dependence on σ). Although σ is stationary, we still in-

dex continuation payoffs and strategies by t to capture the changing ideal points of the players and

reduce notation.

With this notation in hand, we say that a strategy profile σ∗ = (π∗, α∗) constitutes an equilibrium

if for all ideal points (x̂i, ŷ) for i ∈ {L,R}, every status quo q, and all t, the following conditions

hold:

• for any proposal (x, y), L accepts, α(x, y, q) = 1, if and only if

uLt(x) + vt(y) + δV L
t (x, y) ≥ uLt(x

q) + vt(y
q) + δV L

t (xq, yq).

• R’s proposal, π(q), solves

max
(x,y)∈P

uRt(x) + vt(y) + δV R
t (x, y)

s.t. uLt(x) + vt(y) + δV L
t (x, y) ≥ uLt(x

q) + vt(y
q) + δV L

t (xq, yq)

Let t be the first period such that ŷt = Y and xR
t = X. Corollary 1 characterizes equilibrium

behavior when t ≥ t. In this case, ideal policies have stopped evolving and the equilibrium policy

is at the efficient outcome every period.

Corollary 1. If t ≥ t then in equilibrium R proposes y∗t = ŷt = Y .

As in the two-period model, when the common-values dimension does not evolve, the cost of
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inefficiency today and tomorrow is the same.10 Thus, there is no room for either the proposer or the

veto player to strategically exploit inefficiency. At t = t, R uses the optimal common-values policy

to maximize ideological concessions and the policy on both dimensions is stuck in all subsequent

periods.

We now characterize how policy outcomes evolve leading up to t. We first focus on the case where

polarization increases slowly in the long run relative to changes on the common-values dimension.

Proposition 4. If η < 1 then there exists a t̂ < t such that the equilibrium policy outcome is

xt = x̂R
t and yt = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large we have t̂ = 1.

Proposition 4 confirms our insights from the baseline model. When polarization on the ideolog-

ical dimension evolves slowly (i.e., the evolution is concave), the parties always reach the efficient

common-values policy before the ‘forced’ end date t. For any period t > t̂, R proposes a bundle

combining the commonly beneficial policy ŷt with its preferred ideological policy in period t. Period

t̂ is thus the first period where the growth in polarization has slowed down enough relative to the

common-values dimension that even by proposing the statically efficient Y -policy in each period the

proposer has enough leverage to implement his ideal point on the conflict dimension. Furthermore,

when the evolution of the common-values dimension is sufficiently rapid the parties reach efficiency

immediately.

Next, we consider the case of rapidly growing polarization:

Proposition 5. If η > 1 then there exists t̃ such that y∗t ̸= ŷt in every period t ∈ [t̃, tY ). If γ is

sufficiently small then t̃ = 1.

As in the two-period model, when polarization on the ideological dimension grows fast enough,

the policy outcome is inefficient in every period prior to the ‘end date’ tY . Notice that this holds

for any tY , indicating that rapidly growing polarization can sustain inefficiency on the path of play

for an arbitrarily long period of time.

10A similar result can be shown if only the ideal point on the common-values dimension has stopped evolving.
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Robustness

Here, we discuss the robustness of our results to relaxing several of the assumptions imposed in

the baseline model. Formal analysis is presented in Appendix C. For simplicity, we return to

our two-period setting. Further, we assume the initial status quo is sufficiently unfavorable for L

that R is unconstrained in the first period. Recall that, in this case, the baseline model predicts

undershooting under rapidly increasing polarization and efficiency under slow polarization. Thus,

this case creates the starkest comparison for understanding the conditions that lead to inefficiency.

Turnover. Up to this point, we assumed that party R is always the proposer, thus emphasizing

that inefficiency and ideological infection in our setting do not stem from fear of the other party

taking power. We now turn our attention to the implications of turnover for inefficiency. Specifically,

we assume R is the proposer in period 1 and remains so with probability ρ in period 2, while L

becomes the proposer with probability 1− ρ.

We demonstrate that policy outcomes are still almost always inefficient when polarization in-

creases rapidly.

Proposition 6. Assume uR2(x̂L2) < max{uR2(x̂R1), uL2(x̂R1)} + v2(ŷ1). There exists a unique

ρ̃ ∈ (0, 1) such that |y∗1− ŷ1| is decreasing in ρ for ρ < ρ̃ and increasing in π for π > π̃. Furthermore,

y∗1 < ŷ1 for ρ > ρ̃ and y∗1 > ŷ1 for ρ < ρ̃.

If ρ is high then R is confident of remaining the proposer tomorrow and therefore undershoots in

the first period. However, as ρ decreases, R becomes less confident of remaining in power and moves

y towards ŷ1 to offset the downside of keeping leverage in case L becomes the proposer. Eventually,

ρ < ρ̃ and the probability of remaining proposer is sufficiently low that R begins to overshoot as

insurance against L becoming the proposer tomorrow. Thus, there is a unique value of ρ for which

the proposer’s incentives to under and overshoot exactly compensate each other, resulting in an

efficient equilibrium. For all other values, inefficiency persists. This finding suggests that during

times of rapidly increasing polarization, electoral uncertainty over who will hold power tomorrow

can partially mitigate ideological infection, but cannot completely eliminate such distortions.
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Furthermore, Corollary 2 illustrates that, under some parameter values, turnover can actually

create inefficiency:

Corollary 2. Suppose that uR2(x̂
R
1 ) > uL2(x̂

R
1 ) and uR2(x̂L2) ∈ [uL2(x̂R1)+v2(ŷ1), uR2(x̂R1)+v2(ŷ1)].

Then, y∗1 = ŷ1 when ρ = 1, but y∗1 ̸= ŷ1 for any ρ < 1.

When R is sure to remain in power in the second period, efficiency emerges if and only if by

setting y1 = ŷ1 (and x1 = x̂R
1 ) R still maintains enough leverage to obtain its static optimum in the

second period. This condition ensures that any marginal movement away from ŷ1 has no impact

on the outcome of the second-period bargaining. However, when ρ < 1 for this marginal effect to

be insignificant L must also be able to pass its optimal bundle after inheriting the status quo at

(x̂R
1 , ŷ1), should L come to power in the second period. When uR2(x̂

R
1 ) > uL2(x̂

R
1 ), this second

condition is more binding. As a result, introducing turnover can generate inefficiency under certain

conditions.

Stochastic Preferences. In our analysis thus far, we have assumed the players can perfectly

anticipate how their respective ideological preferences will evolve over time. This assumption is

useful isolate the mechanism behind our results and abstract from potential insurance motives

that could introduce distortions when players are confronted with uncertainty, which is a common

occurrence in the existing literature.

Suppose the players anticipate that ideological polarization will (weakly) increase in the second

period, but do not know by how much. Formally, x̂R
2 = x̂R

1 + ϵ and x̂L
2 = x̂L

1 − ϵ, where ϵ is

drawn from a distribution with support [0, ϵ̄]. First, we note that equilibrium outcomes are never

inefficient if the optimal common-value dimension remains constant over time, ŷ1 = ŷ2. Consider

instead ŷ2 > ŷ1. To begin, suppose that ϵ̄ is such that when x̂R
2 = x̂R

1 + ϵ̄ and x̂L
2 = x̂L

1 − ϵ̄, condition

5 is satisfied. In this case, although the parties cannot perfectly predict their ideological preferences,

it is possible they will become so polarized that inefficiency in the first period could yield gains for

the proposer in the second.11 This generates incentives for the proposer to distort policy in the

11Recall that condition 5 indicates that if R implements his static optimum in the first period, (x̂R
1 , ŷ1), he will

not have enough leverage to get his static optimum in the second.
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first period, resulting in y∗1 ̸= ŷ1. On the other hand, if condition 5 is not met at x̂R
2 = x̂R

1 + ϵ̄ and

x̂L
2 = x̂L

1 − ϵ̄, then R chooses x∗
1 = x̂R

1 , y
∗
1 = ŷ1, and is able to obtain its ideal point in the second

period regardless of the shock.

Therefore, even when parties face uncertainty over their future preferences, the mere possibility

of rapid ideological polarization is enough to generate inefficiency on the common-values dimension.

Moreover, similar results would hold if players also faced uncertainty over the evolution of the

optimal policy on the y dimension.

Different Weights. Our previous discussions highlight that the reason for inefficiency in equi-

librium is the gap between the cost that the proposer must pay in the first period and the cost

imposed on the veto player in the second. In the baseline model, this gap arises from the evolution

of the optimal common-values policy, which, when combined with concave preferences, results in

residual inefficiency from the first period being more costly in the second. Alternatively, we can

generate this wedge by assuming that the proposer and veto player attach different weights to the

common-values dimension.

Suppose that the common-values ideal policy remains unchanged over time, but R places weight

θ on this dimension, θv(y). If R places greater weight than L, θ > 1 then the equilibrium outcome is

efficient as in the baseline. Additionally, if there is no change in the players’ ideological preferences

then R simply moves policy to its preferred ideal point on both dimensions. Thus, increasing

polarization remains important for inefficiency to emerge. In particular, if θ is sufficiently low and

the parties become more extreme then the proposer still implements an inefficient policy y1 < ŷ1 to

maintain future bargaining leverage. This inefficiency is advantageous because, due to the different

weights assigned to the common-values dimension, it is more costly for the veto player in the second

period than it was for the proposer in the first.

Risk Aversion. To obtain sharper characterization of the results, in the baseline model we assume

quadratic-loss utility functions for the players on each dimension. However, the mechanism that

generates inefficiency only requires the players have some risk-aversion. Specifically, the proof that
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policy outcomes are inefficient when Uq is sufficiently low only requires that utility functions are

single-peaked and everywhere differentiable, i.e., utility is concave near the ideal point.

However, a minimal amount of risk-aversion is necessary for inefficiency. When vt(y) = −|y− ŷt|

we show that the equilibrium policy is always efficient. Thus, this analysis confirms an intuition

already described in details in the previous analysis section. The mechanism underlying our results

is the property that concave preferences generate the compounding effect, whereby (under evolving

ideal points) a residual inefficiency unit inherited from the first period being more costly in the

second.

General Movements. Building on our motivating observation, in the baseline model we assumed

both parties become more extreme over time. We now consider what happens if ideal points can

move in any direction.

In this case, there is still no inefficiency whenever the common-values ideal policy remains

constant. Additionally, we find that the proposer must become more extreme in the second period

to sustain inefficiency in the first. That is, if the right-wing party’s ideal point shifts to the left,

the efficient policy ŷ1 is always implemented in the first period. Alternatively, if both parties’ ideal

points shift to the right, then a sufficient condition for inefficiency is that the right-wing party’s ideal

point moves faster, which increases polarization. Conversely, if the left-wing party’s movement is

faster and polarization decreases, then inefficiency may only emerge if the movement is not too large.

Therefore, as in the baseline model, rapidly increasing polarization leads to inevitable ideological

infection. Conversely, when polarization decreases too quickly, inefficiency never emerges.

Conclusion

This paper analyzes a model where two parties bargain over two issues, one with ideological conflict

and one where they agree on the correct policy, and today’s policy outcome becomes tomorrow’s

status quo. In equilibrium, the proposer can use the common values dimension to extract concessions

on the ideological one. When parties are forward looking and their preferences evolve over time, this
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may generate inefficiencies in equilibrium. Even though the parties agree on what is the optimal

policy on the common values dimension, they sometimes fail to implement it. Crucially, this form

of ideological infection is inescapable if polarization increases rapidly over time.
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A Proofs for Baseline Model

We split problem 2 into two cases, depending on if x∗
2(x, y) = x(x, y) or x∗

2(x, y) = x̂R
2 .

First, for (x, y) such that x∗
2 = x(x, y) we can write the proposer’s problem as

max
x,y

uR1(x) + v1(y) + uR2

(
x2(x, y)

)
s.t. uL1(x) + v1(y) + uL2(x) + v2(y) ≥ Uq

uL2(x) + v2(y) ≥ uL2(x̂
R
2 )

System 7 yields the following KKT conditions for this problem:

u′
R1(x) +

∂x2

∂x
u′
R2

(
x(x, y)

)
+ λ1

[
u′
L1(x) +

∂x

∂x
u′
L2

(
x(x, y)

)]
+ λ2u

′
L2(x) = 0

v′1(y) +
∂x

∂y
u′
R2

(
x(x, y)

)
+ λ1

[
v′1(y) +

∂x

∂y
u′
L2

(
x(x, y)

)]
+ λ2v

′
2(y) = 0

λ1

[
uL1(x) + v1(y) + uL2

(
x(x, y)

)
− Uq

]
= 0

λ2

[
uL2(x) + v2(y)− uL2(x̂

R
2 )

]
= 0

λ1, λ2 ≥ 0

(7a)

(7b)

(7c)

(7d)

(7e)

Alternatively, for (x, y) such that x∗
2(x, y) = x̂R

2 the proposer’s problem is

max
x,y

uR1(x) + v1(y)

s.t. uL1(x) + v1(y) + uL2(x̂
R
2 ) ≥ Uq

uL2(x) + v2(y) ≤ uL2(x̂
R
2 )

1



The KKT conditions for this problem yields the system 8:

u′
R1(x) + λ1u

′
L1(x)− λ2u

′
L2(x) = 0

v′1(y) + λ1v
′
1(y)− λ2v

′
2(y) = 0

λ1

[
uL1(x) + v1(y) + uL2(x̂

R
2 )− Uq

]
= 0

λ2

[
uL2(x̂

R
2 )− uL2(x)− v2(y)

]
= 0

λ1, λ2 ≥ 0

(8a)

(8b)

(8c)

(8d)

(8e)

Lemma A.1. Any (x, y) such that x(x, y) > x̂R
2 and y ̸= ŷ1 does not solve 2.

Proof. Assume (x, y) is optimal. Since x(x, y) is continuous in y there exists y′ closer to ŷ1 such

that x(x, y′) > x̂R
2 . Because uL1(x) + v1(y

′) + uL2(x̂
R
2 ) > uL1(x) + v1(y) + uL2(x̂

R
2 ) it must be that

(x, y′) also satisfies the constraint. Moreover, evaluating the objective function at (x, y′) and (x, y)

yields uR1(x) + v1(y
′) + uR2(x̂

R
2 ) > uR1(x) + v1(y) + uR2(x̂

R
2 ), contradicting that (x, y) solves 2.

Proposition 1. If ŷ1 = ŷ2 = ŷ then y∗1 = y∗2 = ŷ.

Proof. Since ŷ1 = ŷ2 let v(y) = v1(y) = v2(y). To start, note that by A.1 if (x, y) is optimal with

y ̸= ŷ1 then we must have x(x, y) ≤ x̂R
2 . Thus, if (x, y) is optimal then it must solve system 7.

If λ2 > 0 then x(x, y) = x̂R
2 and 7b reduces to v′(y)(1 + λ1 + λ2) = 0 which holds iff y = ŷ.

Moving forward, assume λ2 = 0.

Assuming λ1 = 0, any equilibrium pair (x, y) must satisfy:

u′
R1 +

∂x

∂x
u′
R2(x(x, y)) = 0 (9)

v′(y) +
∂x

∂y
u′
R2(x(x, y)) = 0. (10)

Assuming y ̸= ŷ12 and substituting in ∂x
∂x

=
u′
L2(x)

u′
L2(x)

and ∂x
∂y

= v′(y)
u′
L2(x)

, the above reduce to

12Notice that at y = ŷ, 10 is always satisfied.
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u′
R1 +

u′
L2(x)

u′
L2(x)

u′
R2(x(x, y)) = 0 (11)

v′(y) +
v′(y)

u′
L2(x)

u′
R2(x(x, y)) = 0. (12)

By 12, in equilibrium we must have

u′
R2(x)

u′
L2(x)

= −1, (13)

and by 11

u′
R2(x)

u′
L2(x)

= −u′
R2(x)

u′
L2(x)

. (14)

Combining the above, we obtain

u′
R1(x)

u′
L2(x)

= 1, (15)

which never holds.

Next, assume the veto player’s first period constraint is binding, so λ1 > 0. Consequently, for

the KKT conditions to hold requires that uL2(x)+v(y) = uL2(x̂
R
2 ), which implies that x(x, y) = x̂R

2 .

We can also rewrite the condition (7b) as v′(y)
(
1 +

u′
R2(x(x,y)

u′
L2(x(x,y)

+ λ1

)
= 0. Because x(x, y) = x̂R2

this yields u′
R2(x(x, y)) = u′

R2(x̂
R
2 ) = 0. Thus, (7b) simplifies to v′(y)(1 + λ1) = 0. If y ̸= ŷ1 then

v′(y) ̸= 0, thus for this condition to hold requires 1 + λ1 = 0. However, λ1 > 0, a contradiction.

Thus, there cannot exist a solution to system (7) with y ̸= ŷ.

Lemma A.2. If λ1 > 0 and λ2 = 0 then there is at most one value of Uq such that y∗1 = ŷ1 solves

7.

Proof. By 7 if y = ŷ1 then x must solve

uL1(x) + uL2

(
x(x, ŷ1)

)
= Uq (16)

3



The LHS of the is strictly decreasing in x for x > x̂L
1 , thus, there must be a unique x′ > x̂L

1 that

solves this equality.

Solving for λ1 and rearranging x must also solve

u′
R2(x(x, ŷ1))

u′
L2(x(x, ŷ1))

=
u′
R1(x)

u′
L1(x)

(17)

Since ui is quadratic it is straightforward to show that there exists a unique x′′ that solves

17. Notice that neither side of 17 depends on Uq whereas RHS 16 is strictly increasing in Uq.

Consequently, x′ = x′′ for at most one values of the status quo Uq.

Lemma A.3. If uL2(x̂
R
2 ) < uL1(x̂

R
1 ) + v2(ŷ1) then x∗

2(x, y) = x(x, y).

Proof. Note that x∗
2(x, y) ̸= x(x, y) if and only if x2(x, y) > x̂R

2 . Lemma A.1 implies that if there is

a solution with x2(x, y) > x̂R
2 then y = ŷ1. Thus, if x(x, y) > x̂R

2 then uL2(x̂
R
2 ) > uL1(x) + v2(ŷ1).

If uL2(x̂
R
2 ) ≤ uL2(x̂

R
1 ) + v2(ŷ1) then uL2(x̂

R
2 ) < uL2(x) + v2(ŷ1) for all x ∈ (x̂L

2 , x̂
R
1 ). Additionally,

it cannot be optimal for R to choose x > x̂R
1 s.t. uL2(x̂

R
2 ) > uL2(x) + v2(ŷ1) since R can deviate

to x′ closer to x̂R
1 and improve the first-period payoff for L and R without changing second period

payoffs. Thus, if uL2(x̂
R
2 ) ≤ uL2(x̂

R
1 ) + v2(ŷ1), then it cannot be optimal to choose x, y such that

x(x, y) > x̂R
2 .

Lemma A.4. Assume uL2(x̂
R
2 ) < uL2(x̂

R
1 )+v2(ŷ1). There exists U such that if Uq > U then y1 > ŷ1.

Otherwise, if Uq < U then y1 < ŷ1.

Proof. By Lemma A.3, we can focus on (x, y) such that x∗
2(x, y) = x(x, y). Thus, if (x, y) is optimal

there must be a λ1, λ2 such that (x, y, λ1, λ2) solves 7.

To start, note that if Uq is sufficiently low then the first-period veto player constraint does not

4



bind, thus, λ1 = 0. In this case, the KKT conditions become

u′
R1(x) +

∂x

∂x
u′
R2

(
x(x, y)

)
+ λ2u

′
L2(x) = 0 (18)

v′1(y) +
∂x

∂y
u′
R2

(
x(x, y)

)
+ λ2v

′
2(y) = 0 (19)

λ2

[
uL2(x) + v2(y)− uL2(x̂

R
2 )

]
= 0 (20)

λ2 ≥ 0 (21)

First, consider uL2(x) + v2(y) − uL2(x̂
R
2 ) > 0 so that λ2 = 0. Assume y ∈ [ŷ1, ŷ2). This implies

v′1(y) ≤ 0, ∂x
∂y

< 0 and u′
R2(x(x, y)) ≥ 0. Thus, a necessary condition for the second equality to hold

is that x(x, y) = x̂R
2 , which contradicts uL2(x) + v2(y)− uL2(x̂

R
2 ) > 0.

Second, consider uL2(x) + v2(y) − uL2(x̂
R
2 ) = 0 so x(x, y) = x̂R

2 . Thus, for the first condition

to hold we must have u′
R1(x) + λ2u

′
L2(x) = 0, which implies u′

R1(x) ≥ 0 which implies x ≤ x̂R
1 .

Thus, uL2(x) + v2(y) ≥ uL2(x̂
R
1 ) + v2(ŷ1). But by assumption uL2(x̂

R
2 ) < uL2(x̂

R
1 ) + v2(ŷ1), which

contradicts that uL2(x) + v2(y)− uL2(x̂
R
2 ) = 0.

Next, let xq
1 = x̂L

1 and yq1 = ŷ1, thus, the first period constraint is binding. This yields Uq =

uL2(x̂
L
1 )+v2(ŷ1). For a contradiction assume that y < ŷ1 is optimal. To satisfy first period constraint

we need uL1(x) + v1(y) + uL2(x) + v2(y) = uL2(x̂
L
1 ) + v2(ŷ1). If y < ŷ1 a necessary condition for

this to be satisfied is that x < x̂L
1 . In this case, uR1(x) < uR1(x̂

L
1 ) and v1(y) < v1(ŷ1) a necessary

condition for such a proposal to be optimal for R is that x(x, y) > x(x̂L
1 , ŷ1). This inequality implies

that uL2(x) + v2(y) < uL2(x̂
L
1 ) + v2(ŷ1). However, then for the veto player to accept (x, y) requires

uL1(x) + v1(y) > 0, which can never hold.

The theorem of the maximum yields that the correspondence of equilibrium proposals is upper

hemi-continuous in Uq.
13 By Lemma A.2 there is at most one values of Uq such that y∗1 = ŷ1. Thus,

there must be a unique U q such that in equilibrium y∗1 < ŷ1 for Uq < U q and y∗1 > ŷ1 for Uq > U q.

13Moreover, Theorem I.3.1 from Mas-Colell (1985) yields that the equilibrium proposal is unique for almost all
parameters.
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Lemma A.5. Assume uL2(x̂
R
1 ) + v2(ŷ1) ≤ uL2(x̂

R
2 ) and the veto player’s constraint binds. Any

(x, y) such that x2(x, y) = x̂R
2 with y ̸= ŷ1 does not solve 2.

Proof. By Lemma A.1 if (x, y) is optimal with y ̸= ŷ1 then it solves system 7. If x2(x, y) = x̂R
2 then

the system reduces to

u′
R1(x) + λ1(u

′
L1(x) + u′

L2(x)) + λ2u
′
L2(x) = 0 (22)

v′1(y) + λ1(v
′
1(y) + v′2(y)) + λ2v

′
2(y) = 0 (23)

uL1(x) + v1(y) + uL2(x̂
R
2 )− U1 = 0 (24)

uL2(x) + v2(y)− uL2(x̂
R
2 ) = 0 (25)

If y < ŷ1 then the LHS of 23 is strictly positive, so this cannot be optimal. Next, assume y > ŷ1.

If x < x̂R
1 then uL2(x̂

R
2 ) = uL2(x) + v2(y) > uL2(x̂

R
1 ) + v2(ŷ1), which implies that R can get x̂R

2

passed tomorrow if (x̂R
1 , ŷ1) is implemented today. Further, notice that uL1(x)+ v1(ŷ1)+uL2(x̂

R
2 ) >

uL1(x) + v1(y1) + uL2(x̂
R
2 ), therefore (x, ŷ1) is passable today, and preferred by the proposer to the

conjectured (x, y). Finally, supposes instead x ≥ x̂R
1 . Then LHS 22 is strictly less than 0, and so

this cannot be optimal.

Lemma A.6. Assume uL2(x̂
R
2 ) ≥ uL2(x̂

R
1 )+v2(ŷ1). Let x

′ be the upper solution to uL1(x)+uL2(x̂
R
2 )−

Uq = 0. Let x′′ be the solution to uL2(x̂
R
2 )− uL2(x)− v2(ŷ1) = 0. There exists U ′

q such that x′ > x′′

if and only if Uq < U ′
q.

Proof. At Uq = uL1(x̂
R
1 )+uL2(x̂

2) we have x′ = x̂R
1 ≥ x′′. The solution to uL1(x)+uL2(x̂

R
2 )−Uq = 0

is strictly decreasing in Uq. The claim then follows from the observation that x′′ is not a function

of Uq.

Lemma A.7. Assume Uq < U q. There exists U q < U q such that x > x̂R
1 for U < U q and x < x̂R

1

for U > U q.

6



Proof. Set x = x̂R
1 . Then need y such that

uL1(x̂
R
1 ) + v1(y) + uL2(x(x̂

R
1 , y)) = Uq

and y must solve

u′
R2(x(x̂

R
1 , y))

u′
R2(x(x̂

R
1 , y))

u′
L1(x̂

R
1 )

u′
L1(x̂

R
1 ) + u′

L2(x̂
R
1 )

=
v′1(y) +

u′
R2(x(x̂

R
1 ,y))

u′
R2(x(x̂

R
1 ,y))

v′2(y)

v′1(y) + v′2(y)

⇔ u′
R2(x(x̂

R
1 , y))

u′
L1(x̂

R
1 )

u′
L1(x̂

R
1 ) + u′

L2(x̂
R
1 )

= u′
R2(x(x̂

R
1 , y))

If u′
R2(x) ̸= 0 then the above reduces to

u′
L1(x̂

R
1 )

u′
L1(x̂

R
1 )+u′

L2(x̂
R
1 )

= 1, which never holds. Thus, this only

holds for the unique y < ŷ2 such that x(x̂R
1 , y) = x̂R

2 , which sets both sides equal to 0 and does not

depend on Uq. Hence, there is at most one Uq such that x∗
1 = x̂R

1 .

Proposition 2. Assume that uL2(x̂
R
2 ) − uL2(x̂

R
1 ) ≥ v2(ŷ1) − v2(ŷ2). There exists a unique Ũ such

that

• If Uq < Ũ , then the equilibrium policy outcome is efficient, y∗1 = ŷ1, and x∗
1 = x̂R

1

• If Uq > Ũ , then the equilibrium policy outcome overshoots, y∗1 > ŷ1, and x∗
1 < x̂R

1

Proof. For Uq ≤ uL1(x̂
R
1 ) + uL2(x̂

R
2 ) clearly (x, y) = (x̂R

1 , ŷ1) is optimal. For the remainder of the

proof, assume Uq > uL1(x̂
R
1 ) + uL2(x̂

R
2 ).

To start, assume Uq < U ′
q. Thus, by Lemma A.6 x′′ < x′. We show that y < ŷ1 cannot

be optimal. For a contradiction, assume (x, y) such that y < ŷ1 is optimal. First, if x > x′

then uL2(x) + v2(y) < uL2(x
′) + v2(ŷ1) ≤ uL2(x̂

R
2 ). Therefore, uL2(x

∗
2(x, y)) = uL2(x

∗
2(x

′, ŷ1)) =

uL2(x̂
R
2 ). However, L’s utility in the first period from (x, y) is strictly less than from (x′, ŷ1), thus

uL1(x) + v1(y) + uL2(x̂
R
2 ) < Uq. Second, if x < x′ then R can deviate to y = ŷ1 and x = x′, which

L accepts and this strictly improves R’s first-period payoff and weakly improves the second-period

payoff. Thus, y < ŷ1 cannot be optimal.

At Uq = U ′
q if y = ŷ1 then x = x′ and x(x′, ŷ1) = x̂R

2 . Thus, if this is optimal it must solve

7



7. However, for this to hold requires λ1 = λ2 = 0. But this implies that a necessary condition is

u′
R1(x) = 0, which fails at x′. However, by the argument in the previous paragraph y = ŷ1 must

be better than y < ŷ1. Thus, at U ′
q we must have y∗1 > ŷ1. Moreover, by Lemma A.2 we can have

y∗1 = ŷ1 for at most one values of Uq. However, the arguments from Lemma A.4 imply that for Uq

sufficiently high y∗1 > ŷ1. Thus, we must have y∗1 > ŷ1 for all Uq ≥ U ′
q.

Proposition 3. Assume uL2(x̂
R
2 ) − uL2(x̂

R
1 ) < v2(ŷ1) − v2(ŷ2). There exists unique U < U such

that

• If Uq < U , then in equilibrium y∗1 < ŷ1, and x∗
1 > x̂R

1

• If Uq ∈ (U,U), then in equilibrium y∗1 < ŷ1, and x∗
1 < x̂R

1

• If Uq > U , then in equilibrium y∗1 ∈ (ŷ1, ŷ
L
d ), and x∗

1 < x̂R
1

Proof. The result follows from Lemmas A.4 and A.7.

B Proofs for Long-run Outcomes

Recall that maxX = X, maxY = Y , and define minX = X, minY = Y . Similar to tY , define tX

be the first period such that x̂R
t = X and x̂L

t = X and define t = max{tX , tY }.

Lemma B.1. Any subgame starting at t ≥ t has an equilibrium in which R proposes y∗t = ŷt = Y

and x∗
t = min{X, x(xq

t , y
q
t )}. Moreover, every equilibrium yields the same continuation payoff.

Proof. For all t ≥ t we have vt(y) = vt(y) = −(y − Y )2 ≡ v(y), uLt(x) = uLt(x) = −(x − X)2,

and uRt(x) = uRt(x) = −(x−X)2. Conjecture that in every period L accepts any (x, y) such that

uLt(x) + v(y) ≥ uLt(x
q
t ) + v(yqt ) and R proposes (x, y) to solve

max
x,y

uRt(x) + v(y)

s.t. uLt(x) + v(y) ≥ uLt(x
q
t ) + v(yqt ),

8



which yields y∗ = Y and x∗ = min{X, x(xq, yq)}. We show this is an equilibrium.

If L accepts this yields

uLt(x
∗) + v(Y )

1− δ

If L rejects then the status quo tomorrow remains (xq, yq) and tomorrow R again proposes (x∗, y∗),

which under the conjectured strategy profile L accepts. Thus, L’s payoff from rejecting is

uLt(x
q) + v(yq) + δ

uLt(x
∗) + v(Y )

1− δ
,

which is weakly less than its payoff from accepting by construction of (x∗, y∗).

Now consider the proposer. If R does not deviate from the proposed strategy this yields a payoff

uRt(x
∗) + v(y∗) + δ

uRt(x
∗) + v(y∗)

1− δ

If R deviates and proposes any (x, y) such that uLt(x) + v(y) < uLt(x
q) + v(yq) then L rejects, the

status quo remains in place, and tomorrow R proposes (x∗, y∗) which is accepted. Thus, such a

deviation yields

uRt(x
q) + v(yq) + δ

uRt(x
∗) + v(y∗)

1− δ
,

which is weakly less than its payoff from not deviating by construction of (x∗, y∗).

Finally, consider a deviation to (x′, y′) ̸= (x∗, y∗) such that uLt(x
′) + v(y′) ≥ uLt(x

q) + v(yq).

If uLt(x
′) + v(y′) = uLt(x

q) + v(yq) then the constraint tomorrow is the exact same today and

R proposes x∗, y∗ tomorrow which is accepted and remains in place forever after. However, by

construction the utility today from (x′, y′) must be weakly worse than the utility from (x∗, y∗),

thus, (x′, y′) is not profitable. If uLt(x
′) + v(y′) > uLt(x

q) + v(yq) then (x′, y′) must yield a worse

utility today to R and makes the constraint tomorrow more binding which under the conjectured

9



strategy yields a worse payoff in every subsequent period.

We now prove uniqueness of continuation values. To start, note that (X,Y ) is R’s unconstrained

maximizer. If (xq, yq) is such that x(xq, yq) ≥ X then the equilibrium is unique, as R can deviate

to the strategy propose (X,Y ) every period, and L’s equilibrium acceptance condition implies

that L must accept. Next, assume x(xq, yq) < X. There cannot be an equilibrium in which R

ever proposes and passes (X,Y ), as this implies that at some point R passes a policy which is

worse than the status quo for L. But then either every policy on the path is worse for L than

the status quo, in which case L can deviate from the start by initially rejecting every period.

Or some policy is better for L on the path, in which case L can profitably deviate by rejecting

all future offers. Thus, in any equilibrium L’s constraint must be binding every period, which

implies that L’s payoff from accepting any offer (x, y) is
uLt(x)+v(y)

1−δ
. Constraint set in any period

is A(xq, yq) = {(x, y) ∈ P|uLt(x) + v(y) = uLt(x
q) + v(yq)}, which is a continuous correspondence.

Thus, the dynamic programming problem for R has a unique solution (Stokey et al., 1989).

Proposition 4. There exists an equilibrium and every equilibrium yields the same continuation

values.

Proof. Given the assumed evolution of ideal points, the ideal points hit the boundary of P at some

time t < ∞. Lemma B.1 yields unique continuation values V L
t
(x, y) and V R

t
(x, y) starting in period

t. Thus, define the finite horizon t with payoffs set at these continuation payoffs then the equilibria

of this finite game corresponds to those of the infinite horizon model. Again this finite game clearly

must have an equilibrium must exist and all equilibria must yield the continuation payoffs.

Proposition 4. If η < 1 then there exists a t̂ < t such that the equilibrium policy outcome is

xt = x̂R
t and yt = ŷt in every period t ≥ t̂. Furthermore, for γ sufficiently large we have t̂ = 1.

Proof. First, we show that if t is sufficiently large then in equilibrium R proposes x∗
t = x̂R

t and

y∗t = ŷt whenever the status quo is such that uLt(x̂
R
t ) + vt(ŷt) ≥ uLt(x

q
t ) + vt(y

q
t ) and L accepts the

10



proposal. Clearly R has no incentive to deviate given the proposed strategies. Next, consider L.

L is willing to accept the proposal if rejecting today leads to R making the same form of proposal

tomorrow, since given the strategies L accepts which thus yields the same dynamic utility to L and

by construction it is statically optimal to accept. Thus, we need to show that if t is sufficiently

large and uLt(x̂
R
t ) + vt(ŷt) ≥ uLt(x

q
t ) + vt(y

q
t ) then uLt+1(x̂

R
t+1) + vt+1(ŷt+1) ≥ uLt+1(x

q
t ) + vt+1(y

q
t ).

Writing the condition as uLt(x̂
R
t )+ vt(ŷt)−uLt(x

q
t )− vt(y

q
t ) ≥ 0 we have that the same condition

will hold in the next period if the LHS of the condition is increasing in t. Differentiating yields

2ηtn−1(xq + tn)− 2(yq − γt)− 8ηt2n−1.

Rearranging this is positive if and only if

yq <
1

γ
ηtη−1

[
3tη − xq

]
+ γt (26)

As t → ∞ the RHS of (26) goes to infinity when η < 1 and γ > 0. Thus, as yq ≤ Y for all t there

exists a t′ such that for all t ≥ t′ the statement holds.

This implies that R’s unconstrained optimal policy in any period t ≥ t′ is (x̂R
t , ŷ

t). Thus, if

R does not get its unconstrained optimal in a period then R must be choosing (x, y) to make L

indifferent between accepting and rejecting. Therefore, if there is an equilibrium such that for all t

party R does not propose (x̂R
t , ŷt) then L’s dynamic payoff is given by

∞∑
t=0

uLt(x
q) + vt(y

q).

However, by η < 1 there is some period t′′ such that starting in t′′ the dynamic payoff to L

from getting (x̂R
t , ŷt) every period is greater than this dynamic payoff from the status quo, which

contradicts that this is an equilibrium. Finally, note that for γ sufficiently large 26 holds for

t = 1.

Proposition 5. If η > 1 then there exists t̃ such that y∗t ̸= ŷt in every period t ∈ [t̃, tY ). If γ is

11



sufficiently small then t̃ = 1.

Proof. R’s problem in period t is

max
(x,y)

uRt(x) + vt(y) + δV R
t+1(x, y)

s.t. uLt(x) + vt(y) + δV L
t+1(x, y) ≥ uLt(x

q
t ) + vt(y

q
t ) + δV L

t+1(x
q
t , y

q
t ).

Considering the modified finite t period game defined in Lemma B.1 we can use the Lagrangian to

analyze solutions to this problem, note that the continutation payoffs are given by the finite sum

of differentiable functions. This gives us the following system

u′
Rt(x) + δ

∂V R
t+1

∂x
+ λ
[
u′
Lt(x) + δ

∂V L
t+1

∂x

]
= 0

v′t(y) + δ
∂V R

t+1

∂y
+ λ
[
v′t(y) + δ

∂V L
t+1

∂y

]
= 0

λ
[
uLt(x) + vt(y) + δV L

t+1(x, y)− uLt(x
q
t )− vt(y

q
t )− δV L

t+1(x
q
t , y

q
t )
]
= 0

We show that we must have y ̸= ŷ for almost all values of the status quo. First, let λ = 0.

In this case, if y = ŷt then the second equality becomes δ
∂V R

t+1

∂y
|y=ŷ = 0. However,

∂V R
t+1

∂y
|y=ŷ = 0

requires λ∗
t+1 = 0 and thus the proposer is unconstrained in the next period. By a similar argument

to the two period case, if the proposer is unconstrained in the next period and this period we must

also have x∗
t = x̂R

t . First, note that if the proposer is unconstrained in all subsequent periods then

we must have (x∗
t , y

∗
t ) = (x̂R

t , ŷt) in each subsequent period, however, the limiting argument from

equation 26 contradicts this for η > 1. Thus, we must have that the constraint binds in some period

after t. Let the first period the constraint binds be period t + 2 (if it is t′ > t + 2 we can shift the

argument up to start at period t′ − 2). Note that for (x∗
t+1, y

∗
t+1) to be an unconstrained maximizer

in t + 1 implies x∗
t+1 > x̂R

t+1 and y∗t+1 < ŷt+1. Thus, the dynamic payoff to L of (x∗
t+1, y

∗
t+1) is less

than its dynamic payoff to (x̂R
t+1, ŷt+1). But then this would imply that (x̂R

t+1, ŷt+1) is passable in

period t+ 1. For η > 1 and t sufficiently large, however, this is impossible given that we know the

t period outcome must be (x̂R
t , ŷt).

12



Next, assume λ > 0. For the above inequalities to hold at y = ŷ requires

u′
Rt(x) + δ

∂V R
t+1

∂x

u′
Lt(x) + δ

∂V L
t+1

∂x

=
∂V R

t+1/∂y

∂V L
t+1/∂y

uLt(x) + δV L
t+1(x, y) = uLt(x

∗
t−1(x

q
1, y

q
1)) + vt(y

∗
t−1(x

q
1, y

q
1)) + δV L

t+1

(
x∗
t−1(x

q
1, y

q
1), y

∗
t−1(x

q
1, y

q
1)
)
.

The LHS of the second inequality is decreasing in x, thus there is at most one x which solves it.

However, the first equality does not depend on the initial status quo and thus any perturbation of

the initial status quo only changes the solution to the second equality. Define g(x) =
(
u′
Rt(x) +

δ
∂V R

t+1

∂x

)
∂V L

t+1/∂y −
(
u′
Lt(x) + δ

∂V L
t+1

∂x

)
∂V R

t+1/∂y. V
i
t+1 is defined by the sum of polynomials, and the

resulting derivatives are also polynomials in x. Thus, g(x) is a polynomial and by the Fundamental

Theorem of Algebra g has a finite number of roots. Therefore, both equalities can hold only for a

measure zero set of initial values of the status quo.

Finally, if γ is sufficiently small then the proposer is constrained every period, thus, λ > 0 and

so there must be inefficiency starting in period 1.

C Proofs for Robustness Extensions

Turnover

Proposition 6.Assume uR2(x̂L2) < max{uR2(x̂R1), uL2(x̂R1} + v2(ŷ1). There exists ρ̃ ∈ (0, 1) such

that |y∗1 − ŷ1| is decreasing in ρ for ρ < ρ̃ and increasing in ρ for ρ > ρ̃. Furthermore, y∗1 < ŷ1 for

ρ > ρ̃ and y∗1 > ŷ1 for ρ < ρ̃.

Proof. If player R is the proposer in the second period then R chooses x∗
R2(x

q
2, y

q
2) = min{x̂R2, xL2}

and if player L is the proposer in the second period then L chooses x∗
L2(x

q
2, y

q
2) = max{x̂L2, xR2},

where xL2(x
q
2, y

q
2) = x(xq

2, y
q
2) and xR2(x

q
2, y

q
2) is defined analogously as the lower solution to L’s

indifference condition in the second period.
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Thus, player R chooses (x, y) in the first period to solve

max
(x,y)

uR1(x) + v1(y) + ρuR2(x
∗
R2(x, y)) + (1− ρ)uR2(x

∗
L2(x, y)).

We can break this maximization problem into several cases depending on (x, y).

For (x, y) such that uR2(x) + v2(y) ≥ uR2(x̂L2) and uL2(x) + v2(y) ≥ uL2(x̂R2) we can write the

above maximization problem as

max
(x,y)

uR1(x) + v1(y) + ρuR2(xL2(x, y)) + (1− ρ)
(
uR2(x) + v2(y)

)
.

Similar arguments as in the baseline show that there cannot be a solution with y∗ = ŷ1.

For (x, y) such that uR2(x̂L2) ≥ uR2(x) + v2(y) and uL2(x̂R2) ≥ uL2(x) + v2(y) we have

max
(x,y)

uR1(x) + v1(y) + ρuR2(x̂R2) + (1− ρ)uR2(x̂L2).

Clearly, if there is an interior solution in this case it must be that x1 = x̂R1 and y1 = ŷ1. Which is

only possible if uR2(x̂L2) ≥ uR2(x̂R1) + v2(ŷ1) and uL2(x̂R2) ≥ uL2(x̂R1) + v2(ŷ1).

For (x, y) such that uR2(x̂L2) ≥ uR2(x) + v2(y) and uL2(x̂R2) ≤ uL2(x) + v2(y) we have

max
(x,y)

uR1(x) + v1(y) + ρuR2(xL2) + (1− ρ)uR2(x̂L2).

In this case, the optimality conditions look similar to the baseline, but with a weight of ρ on some

terms, and the same arguments yield that y∗1 ̸= ŷ1 for almost all parameters.

Finally, (x, y) such that uR2(x̂L2) ≥ uR2(x) + v2(y) and uL2(x̂R2) ≤ uL2(x) + v2(y) we have

max
(x,y)

uR1(x) + v1(y) + ρuR2(x̂L2) + (1− ρ)
(
uR2(x) + v2(y)

)
.
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Any interior solution must solve

u′
R1(x) + (1− ρ)u′

R2(x) = 0

v′(y) + (1− ρ)v′2(y) = 0,

which clearly cannot be satisfied if y = ŷ1.

Thus, a necessary condition for y∗ = ŷ1 is that uR2(x̂L2) ≥ uR2(x) + v2(y) and uL2(x̂R2) ≥

uL2(x) + v2(y).

Next, we characterize how the degree of inefficiency changes with ρ. Assume R’s optimal choice

does not involve either player getting its ideal point in the second period. Letting a = −x and

b = −y we can write R’s maximization problem as

max
(x,y)

uR1(−a) + v1(−b) + ρuR2(xL2(a, b)) + (1− ρ)
(
uR2(−a) + v2(−b)

)
.

Taking cross-partials of the objective function we have

∂2

∂a∂b
= ρ

(
∂2xL2

∂a∂b
u′
R2(xL2(a, b)) +

(∂xL2

∂a

)(∂xL2

∂b

)
u′′
R2(xL(a, b))

)
∂2

∂a∂ρ
=

∂xL2

∂a
u′
R2(xR2(a, b)) + u′

R2(−a)

∂2

∂b∂ρ
=

∂xL2

∂b
u′
R2(xL2(a, b)) + v′2(−b)

We have ∂2xL2

∂a∂b
> 0, ∂xL2

∂a
< 0, and ∂xL2

∂b
> 0, which yields, ∂2

∂a∂b
> 0 and ∂2

∂b∂ρ
> 0. Finally,

u′
R2(x) < u′

R2(x) = u′
R2(−a) and ∂xL2

∂a
∈ (−1, 0), thus ∂2

∂a∂ρ
> 0. The desired result then follows

from the standard theorems on monotone comparative statics, e.g., Milgrom and Shannon (1994).

At ρ = 1 the problem is the same as the baseline so we must have y∗1 < ŷ1. At ρ = 0 there is no

incentive to undershoot, and the previous argument implies that we cannot have y∗1 = ŷ1 so it must

be that y∗1 > ŷ1.
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Stochastic Shocks

Given a realization ϵ in the second period R chooses y∗2 = ŷ2 and x∗
2 = min{x̂R

1 + ϵ, x(x, y; ϵ)}, where

x(x, y; ϵ) solves

−(z − (x̂L
1 − ϵ))2 = −(x− (x̂L

1 − ϵ))2 − (y − ŷ2)
2.

Let ϵ∗(x, y) be the ϵ > 0 that solves xR
2 (x, y; ϵ) = x̂R

1 + ϵ. We can now write R’s problem in the

first period as

max
(x,y)

uR1(x) + v1(y) +

∫ ϵ

min{ϵ,ϵ∗(x,y)}
uR2(x(x, y; ϵ))f(ϵ)dϵ,

where f is the pdf of the distribution of ϵ. Note that at ϵ∗ we have uR2(x
R
2 (x, y; ϵ

∗)) = uR2(x̂
R
1 +

ϵ∗) = 0. Thus, applying Leibniz rule, the first order conditions are given by

u′
R1(x) +

∫
∂x

∂x
u′
R2(x(x, y; ϵ))f(ϵ)dϵ = 0 (27)

v′1(y) +

∫
∂x

∂y
u′
R2(x(x, y; ϵ))f(ϵ)dϵ = 0. (28)

If ŷ1 = ŷ2 then
∂x
∂y

= 0 iff y = ŷ1. Thus, the second condition can only be satisfied if y = ŷ1 and there

must be efficiency. Now assume ŷ2 > ŷ1. If ϵ < ϵ∗(x̂R
1 , ŷ1) then R chooses x∗ = x̂R

1 and y∗ = ŷ1, as

this gives R is first-period optimal and R is able to get its second period optimal for any realization

of ϵ.

Next, assume ϵ > ϵ∗(x̂R
1 , ŷ1). In this case, R always chooses x, y such that ϵ ≥ ϵ∗(x, y). Otherwise,

if ϵ < ϵ∗(x, y) then for any (x, y) ̸= (x̂R
1 , ŷ1) it could deviate closer to (x̂R

1 , ŷ1) and improve its first-

period payoff without changing its second-period payoff. Note that we must have ϵ > ϵ∗(x, y). If

ϵ = ϵ∗(x, y) then the the first order conditions become u′
R1(x) = 0 and v′1(y) = 0 thus (x, y) =

(x̂R
1 , ŷ1), but this contradicts ϵ > ϵ∗(x̂R

1 , ŷ1). Finally, if ϵ > ϵ∗(x, y) then the term under the integral

is non-zero. Since u′
R2(x) > 0 and ∂x

∂y
< 0 the second condition can never hold at y = ŷ1, thus, the

equilibrium policy must be inefficient.
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Different Weights

Suppose that there is no change in the common-values ideal policy, and ŷ2 = ŷ2 = ŷ. Further, let

R’s per-period utility on the common-values dimension be θvt(y), where instead L’s utility remains

vt(y). If x̂R1 = x̂R2 then clearly R maximizes its utility by choosing x = x̂R and y = ŷ. Now assume

x̂R1 < x̂R2. Notice that if y = ŷ then R cannot get its ideal point in the second period because

uL2(x̂
R
2 )+ θv(ŷ) < uL2(x)+ θv(ŷ) for all x < x̂R

2 . Thus, if R gets its ideal point in the second period

then we must have inefficiency. But then, it is easy to see that R can never get its ideal point in the

second period. Choosing a first-period policy that moves the second-period outcome marginally far

from x̂R
2 is costless in period 2, but beneficial in period 1 as it improves efficiency.

So consider the case where R does not get its second period ideal point. The term x(x, y) is

defined the same as before. R’s problem is to solve

max
x,y

uR1(x) + θv(y) + uR2(x(x, y))

This yields first-order conditions

u′
R1(x) +

∂x

∂x
u′
R2(x(x, y)) = 0

θv′(y) +
∂x

∂y
u′
R2(x(x, y)) = 0,

which we can rewrite as

u′
R1(x) +

u′
L2(x)

u′
L2(x(x, y))

u′
R2(x(x, y)) = 0

v′(y)
(
θ +

u′
R2(x(x, y))

u′
L2(x(x, y))

)
= 0,

First, we show that if θ ≥ 1 then there must be efficiency. If there is an equilibrium with y ̸= ŷ
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then for the above conditions to hold requires

u′
R1(x)

u′
L2(x)

= − u′
R2(x(x, y))

u′
L2(x(x, y)))

θ +
u′
R2(x(x, y))

u′
L2(x(x, y)))

= 0.

Thus,
u′
R1(x)

u′
L2(x)

= θ. For
u′
R1(x)

u′
L2(x)

> 0 to hold we must have x > x̂R1. However, this implies |x− x̂R1| <

|x − x̂L2| and thus
u′
R1(x)

u′
L2(x)

< 1 < θ, a contradiction. Next, we show that if θ is sufficiently small

then y∗ ̸= ŷ. Assume y = ŷ is optimal. Then x(x, ŷ) = x and the first condition becomes

u′
R1(x)+u′

R2(x) = 0. Thus, we must have x = x̂R1+x̂R2

2
. Taking derivatives of the objective function

and setting (x, y) = ( x̂R1+x̂R2

2
, ŷ) yields

∂2

∂x2
= −4

∂2

∂y2
= −2

(
θ +

u′
R2(

x̂R1+x̂R2

2
)

u′
L2(

x̂R1+x̂R2

2
)

)
∂2

∂x∂y
= 0.

Thus, a necessary condition for ( x̂R1+x̂R2

2
, ŷ) to be a maximizer is that θ +

u′
R2(

x̂R1+x̂R2
2

)

u′
L2(

x̂R1+x̂R2
2

)
> 0. Hence,

if θ < −u′
R2(

x̂R1+x̂R2
2

)

u′
L2(

x̂R1+x̂R2
2

)
then y = ŷ is not optimal.

Risk Aversion

The proofs required to show we get inefficiency in the bad status quo case only used that uit and

vt are single-peaked and everywhere differentiable. Additionally, uL2(x̂
R
2 ) ≥ uL2(x̂

R
1 ) + v2(ŷ1) is

still clearly sufficient for efficiency. Now instead consider vt(y) = −|y − ŷt| and assume uL2(x̂
R
2 ) ≤

uL2(x̂
R
1 ) + v2(ŷ1). We show that the optimal first period policy sets y1 = ŷ1.

In the second period, x(x, y) solves uL2(z) = uL2(x) − |y − ŷ2|. Since y < ŷ2 we can write this

as uL2(z) = uL2(x)− (ŷ2 − y) and x is still differentiable in y.

Clearly R never overshoots when unconstrained in the first period, thus, consider y ≤ ŷ1. As
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before, R will not choose x(x, y) > x̂R
2 . Thus, we can write its problem as

max
x,y

uR1(x)− (ŷ1 − y) + uR2(x(x, y))

s.t. ŷ1 ≥ y

uL2(x) + v2(y) ≥ uL2(x̂
R
2 ).

This yields KKT conditions

u′
R1(x) +

∂x

∂x
u′
R2(x(x, y)) + λ2u

′
L2(x) = 0 (29)

1 +
∂x

∂y
u′
R2(x(x, y))− λ1 + λ2 = 0 (30)

λ1(ŷ1 − y) = 0 (31)

λ2

(
uL2(x) + v2(y)− uL2(x̂

R
2 )
)
= 0 (32)

If λ1 > 0 then y = ŷ1 and we are done. Assume λ1 = 0. If λ2 = 0 then the first and second

conditions become u′
R1(x) +

u′
R2(x(x,y))

u′
L2(x,y)

u′
L2(x) = 0 and 1 +

u′
R2(x(x,y))

u′
L2(x(x,y))

= 0, respectively. Combining

conditions, this implies that u′
R1(x) = u′

L2(x), which does not hold for any x. Next, assume λ2 > 0.

In this case, x(x, y) = x̂R
2 . The second condition then becomes 1 + λ2 = 0, which never holds.

General Movements

Lemmas A.1 and A.3 hold unchanged. To complete argument consider Lemma A.5. We have

same KKT conditions (22) - (25). The argument for x, y such that uL2(x) + v2(y) − uL2(x̂
R
2 ) > 0

is unchanged. Next, consider uL2(x) + v2(y) − uL2(x̂
R
2 ) > 0. Assume y ∈ [ŷ1, ŷ2) If x̂L

2 < x̂R
1 the

argument is the same as before. If x̂L
2 > x̂R

1 then for (22) to hold we must have u′
R1(x)+λ2u

′
L2(x) = 0,

which implies that u′
R1(x) < 0 and u′

L2(x) > 0, thus, x ∈ (x̂R
1 , x̂

L
2 ). Therefore uL2(x) + v2(y) >

uL2(x̂
R
1 )+ v2(ŷ1). But by assumption uL2(x)+ v2(y) = uL2(x̂

R
2 ) < uL2(x̂

R
1 )+ v2(ŷ1), a contradiction.
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